Chapter 11 – Transport in Plants

Have you ever wondered how water reaches the top of tall trees, or for that matter how and why substances move from one cell to the other, whether all substances move in a similar way, in the same direction and whether metabolic energy is required for moving substances.

Plants need to move molecules over very long distances, much more than animals do; they also do not have a circulatory system in place. Water taken up by the roots has to reach all parts of the plant, up to the very tip of the growing stem.

The photosynthates or food synthesised by the leaves have also to be moved to all parts including the root tips embedded deep inside the soil. Movement across short distances, say within the cell, across the membranes and from cell to cell within the tissue has also to take place.

To understand some of the transport processes that take place in plants, one would have to recollect one’s basic knowledge about the structure of the cell and the anatomy of the plant body. We also need to revisit our understanding of diffusion, besides gaining some knowledge about chemical potential and ions.

When we talk of the movement of substances we need first to define what kind of movement we are talking about, and also what substances we are looking at. In a flowering plant the substances that would need to be transported are water, mineral nutrients, organic nutrients and plant growth regulators. Over small distances substances move by diffusion and by cytoplasmic streaming supplemented by active transport.

Transport over longer distances proceeds through the vascular system (the xylem and the phloem) and is called translocation. An important aspect that needs to be considered is the direction of transport. In rooted plants, transport in xylem (of water and minerals) is essentially unidirectional, from roots to the stems. Organic and mineral nutrients however, undergo multidirectional transport.

Organic compounds synthesised in the photosynthetic leaves are exported to all other parts of the plant including storage organs. From the storage organs they are later re-exported. The mineral nutrients are taken up by the roots and transported upwards into the stem, leaves and the growing regions. When any plant part undergoes senescence, nutrients may be withdrawn from such regions and moved to the growing parts.

Hormones or plant growth regulators and other chemical stimuli are also transported, though in very small amounts, sometimes in a strictly polarised or unidirectional manner from where they are synthesised to other parts. Hence, in a flowering plant there is a complex traffic of compounds (but probably very orderly) moving in different directions, each organ receiving some substances and giving out some others.

Related posts

Leave a Comment