4.6.3 Hybridisation of Elements involving d Orbitals

The elements present in the third period contain d orbitals in addition to s and p orbitals. The energy of the 3d orbitals are comparable to the energy of the 3s and 3p orbitals. The energy of 3d orbitals are also comparable to those of 4s and 4p orbitals. As a consequence the hybridisation involving either 3s, 3p and 3d or 3d, 4s and 4p is possible. However, since the difference in energies of 3p and 4s orbitals is significant, no hybridisation involving 3p, 3d and 4s orbitals is possible.

 

Formation of PCl5 (sp3d hybridisation):

The ground state and the excited state outer electronic configurations of phosphorus (Z=15) are represented below.

Now the five orbitals (i.e., one s, three p and one d orbitals) are available for hybridisation to yield a set of five sp3d hybrid orbitals which are directed towards the five corners of a trigonal bipyramidal as depicted in the Fig.

It should be noted that all the bond angles in trigonal bipyramidal geometry are not equivalent. In PCl5 the five sp3d orbitals of phosphorus overlap with the singly occupied p orbitals of chlorine atoms to form five P–Cl sigma bonds. Three P–Cl bond lie in one plane and make an angle of 120° with each other; these bonds are termed as equatorial bonds.

The remaining two P–Cl bonds–one lying above and the other lying below the equatorial plane, make an angle of 90° with the plane. These bonds are called axial bonds. As the axial bond pairs suffer more repulsive interaction from the equatorial bond pairs, therefore axial bonds have been found to be slightly longer and hence slightly weaker than the equatorial bonds; which makes PCl5 molecule more reactive.

 

Formation of SF6 (sp3d2 hybridisation):

In SF6 the central sulphur atom has the ground state outer electronic configuration 3s23p4. In the exited state the available six orbitals i.e., one s, three p and two d are singly occupied by electrons. These orbitals hybridise to form six new sp3d2 hybrid orbitals, which are projected towards the six corners of a regular octahedron in SF6.

These six sp3d2 hybrid orbitals overlap with singly occupied orbitals of fluorine atoms to form six S–F sigma bonds. Thus SF6 molecule has a regular octahedral geometry as shown in Fig.

 

 

Related posts

Leave a Comment