$$\text { Rate }=P Z_{\mathrm{AB}} \mathrm{e}^{-E_{\mathrm{a}} / R T}$$
$$K_{p}=\frac{\left(p_{C}^{c}\right)\left(p_{D}^{d}\right)}{\left(p_{A}^{a}\right)\left(p_{B}^{b}\right)}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}(\mathrm{R} T)^{(c+d)}}{[\mathrm{A}]^{\alpha}[\mathrm{B}]^{b}(\mathrm{R} T)^{(\alpha+b)}}$$
$$K_{p}=K_{c}(\mathrm{R} T)^{\Delta n}$$
$$x=\frac{(-b \pm \sqrt{b^{2}-4 a c})}{2 a}$$