18.3.3 Electrocardiograph (ECG)

You are probably familiar with this scene from a typical hospital television show: A patient is hooked up to a monitoring machine that shows voltage traces on a screen and makes the sound “... pip... pip... pip..... peeeeeeeeeeeeeeeeeeeeee” as the patient goes into cardiac arrest.

This type of machine (electro-cardiograph) is used to obtain an electrocardiogram (ECG). ECG is a graphical representation of the electrical activity of the heart during a cardiac cycle. To obtain a standard ECG a patient is connected to the machine with three electrical leads (one to each wrist and to the left ankle) that continuously monitor the heart activity.

For a detailed evaluation of the heart’s function, multiple leads are attached to the chest region. Here, we will talk only about a standard ECG. Each peak in the ECG is identified with a letter from P to T that corresponds to a specific electrical activity of the heart.

The P-wave represents the electrical excitation (or depolarisation) of the atria, which leads to the contraction of both the atria. The QRS complex represents the depolarisation of the ventricles, which initiates the ventricular contraction. The contraction starts shortly after Q and marks the beginning of the systole.

The T-wave represents the return of the ventricles from excited to normal state (repolarisation). The end of the T-wave marks the end of systole. Obviously, by counting the number of QRS complexes that occur in a given time period, one can determine the heart beat rate of an individual.

Since the ECGs obtained from different individuals have roughly the same shape for a given lead configuration, any deviation from this shape indicates a possible abnormality or disease. Hence, it is of a great clinical significance.

Related posts

Leave a Comment