11.3 Long Distance Transport of water

At some earlier stage you might have carried out an experiment where you had placed a twig bearing white flowers in coloured water and had watched it turn colour. On examining the cut end of the twig after a few hours you had noted the region through which the coloured water moved.

That experiment very easily demonstrates that the path of water movement is through the vascular bundles, more specifically, the xylem. Now we have to go further and try and understand the mechanism of movement of water and other substances up a plant.

Long distance transport of substances within a plant cannot be by diffusion alone. Diffusion is a slow process. It can account for only short distance movement of molecules. For example, the movement of a molecule across a typical plant cell (about 50 µm) takes approximately 2.5 s. At this rate, can you calculate how many years it would take for the movement of molecules over a distance of 1 m within a plant by diffusion alone?

In large and complex organisms, often substances have to be moved across very large distances. Sometimes the sites of production or absorption and sites of storage are too far from each other; diffusion or active transport would not suffice.

Special long distance transport systems become necessary so as to move substances across long distances and at a much faster rate. Water and minerals, and food are generally moved by a mass or bulk flow system. Mass flow is the movement of substances in bulk or en masse from one point to another as a result of pressure differences between the two points.

It is a characteristic of mass flow that substances, whether in solution or in suspension, are swept along at the same pace, as in a flowing river. This is unlike diffusion where different substances move independently depending on their concentration gradients.

Bulk flow can be achieved either through a positive hydrostatic pressure gradient (e.g., a garden hose) or a negative hydrostatic pressure gradient (e.g., suction through a straw).

The bulk movement of substances through the conducting or vascular tissues of plants is called translocation. Do you remember studying cross sections of roots, stems and leaves of higher plants and studying the vascular system?

The higher plants have highly specialised vascular tissues – xylem and phloem. Xylem is associated with translocation of mainly water, mineral salts, some organic nitrogen and hormones, from roots to the aerial parts of the plants. The phloem translocates a variety of organic and inorganic solutes, mainly from the leaves to other parts of the plants.

Related posts

Leave a Comment