Root Pressure

As various ions from the soil are actively transported into the vascular tissues of the roots, water follows (its potential gradient) and increases the pressure inside the xylem.

This positive pressure is called root pressure, and can be responsible for pushing up water to small heights in the stem.

Choose a small soft-stemmed plant and on a day, when there is plenty of atmospheric moisture, cut the stem horizontally near the base with a sharp blade, early in the morning. You will soon see drops of solution ooze out of the cut stem; this comes out due to the positive root pressure.

If you fix a rubber tube to the cut stem as a sleeve you can actually collect and measure the rate of exudation, and also determine the composition of the exudates.

Effects of root pressure is also observable at night and early morning when evaporation is low, and excess water collects in the form of droplets around special openings of veins near the tip of grass blades, and leaves of many herbaceous parts. Such water loss in its liquid phase is known as guttation.

Root pressure can, at best, only provide a modest push in the overall process of water transport. They obviously do not play a major role in water movement up tall trees. The greatest contribution of root pressure may be to re-establish the continuous chains of water molecules in the xylem which often break under the enormous tensions created by transpiration.

Root pressure does not account for the majority of water transport; most plants meet their need by transpiratory pull. Transpiration pull Despite the absence of a heart or a circulatory system in plants, the flow of water upward through the xylem in plants can achieve fairly high rates, up to 15 metres per hour. How is this movement accomplished? A long standing question is, whether water is ‘pushed’ or ‘pulled’ through the plant.

Most researchers agree that water is mainly ‘pulled’ through the plant, and that the driving force for this process is transpiration from the leaves. This is referred to as the cohesion-tension-transpiration pull model of water transport. But, what generates this transpirational pull? Water is transient in plants. Less than 1 per cent of the water reaching the leaves is used in photosynthesis and plant growth.

Most of it is lost through the stomata in the leaves. This water loss is known as transpiration. You have studied transpiration in an earlier class by enclosing a healthy plant in polythene bag and observing the droplets of water formed inside the bag. You could also study water loss from a leaf using cobalt chloride paper, which turns colour on absorbing water.

Related posts

Leave a Comment