10.4.1 Meiosis I

Prophase I: Prophase of the first meiotic division is typically longer and more complex when compared to prophase of mitosis.

It has been further subdivided into the following five phases based on chromosomal behaviour

  • Leptotene
  • Zygotene
  • Pachytene
  • Diplotene

During leptotene stage the chromosomes become gradually visible under the light microscope. The compaction of chromosomes continues throughout leptotene. This is followed by the second stage of prophase I called zygotene. During this stage chromosomes start pairing together and this process of association is called synapsis.

Such paired chromosomes are called homologous chromosomes. Electron micrographs of this stage indicate that chromosome synapsis is accompanied by the formation of complex structure called synaptonemal complex.

The complex formed by a pair of synapsed homologous chromosomes is called a bivalent or a tetrad. However, these are more clearly visible at the next stage. The first two stages of prophase I are relatively short-lived compared to the next stage that is pachytene. During this stage bivalent chromosomes now clearly appears as tetrads. This stage is characterised by the appearance of recombination nodules, the sites at which crossing over occurs between non-sister chromatids of the homologous chromosomes.

Crossing over is the exchange of genetic material between two homologous chromosomes. Crossing over is also an enzyme-mediated process and the enzyme involved is called recombinase. Crossing over leads to recombination of genetic material on the two chromosomes.

Recombination between homologous chromosomes is completed by the end of pachytene, leaving the chromosomes linked at the sites of crossing over. The beginning of diplotene is recognised by the dissolution of the synaptonemal complex and the tendency of the recombined homologous chromosomes of the bivalents to separate from each other except at the sites of crossovers.

These X-shaped structures, are called chiasmata. In oocytes of some vertebrates, diplotene can last for months or years. The final stage of meiotic prophase I is diakinesis. This is marked by terminalisation of chiasmata.

During this phase the chromosomes are fully condensed and the meiotic spindle is assembled to prepare the homologous chromosomes for separation. By the end of diakinesis, the nucleolus disappears and the nuclear envelope also breaks down. Diakinesis represents transition to metaphase.

  • Metaphase I: The bivalent chromosomes align on the equatorial plate. The microtubules from the opposite poles of the spindle attach to the pair of homologous chromosomes.
  • Anaphase I: The homologous chromosomes separate, while sister chromatids remain associated at their centromeres.
  • Telophase I: The nuclear membrane and nucleolus reappear, cytokinesis follows and this is called as diad of cells. Although in many cases the chromosomes do undergo some dispersion, they do not reach the extremely extended state of the interphase nucleus. The stage between the two meiotic divisions is called interkinesis and is generally short lived. Interkinesis is followed by prophase II, a much simpler prophase than prophase I.


Related posts

Leave a Comment